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ABSTRACT 

We explore the sonification of x-ray scattering data, which are 
two-dimensional arrays of intensity whose meaning is obscure 
and non-intuitive. Direct mapping of the experimental data into 
sound is found to produce timbral sonifications that, while 
sacrificing conventional aesthetic appeal, provide a rich 
auditory landscape for exploration. We discuss the optimization 
of sonification variables, and speculate on potential real-world 
applications. 

1. INTRODUCTION 

Sonification of datasets is becoming more popular as an 
alternative modality for exploring, and understanding, datasets. 
Beyond the obvious implications for accessibility, sonification 
enables interested parties to interact with data more deeply; e.g. 
multi-modal data exploration leverages more of a person’s 
sensory ‘surface area.’ This is especially relevant in light of the 
modern trends in data collection: datasets are growing ever-
larger, and in many cases ever-more complex, esoteric, and 
non-intuitive. We elected to study sonification of x-ray 
scattering data, which are rather abstract datasets that even 
experts struggle to understand. 
 An x-ray scattering experiment consists of directing a 
highly collimated, monochromatic, beam of x-rays through a 
sample of interest. The incident x-ray wave scatters off of all 
the atoms and/or particles in the sample, and the interference of 
these secondary waves produces scattered rays at angle that are 
characteristic of the material’s internal structure. [1] In a 
scattering experiment, the deflection of scattered rays is 
characterized by the so-called momentum transfer vector, 
usually denoted by q, which is computed from the measured 
scattering angle, 2!, by: 

     (1) 

where " is the wavelength of the x-rays. The quantity q has 
units of 1/distance, and q-space is thus frequently called 
‘inverse space,’ or ‘reciprocal space.’ This abstract space is in 
some sense the Fourier transform of the realspace density 
distribution in the sample. Mathematically: 

    (2) 

   (3) 

The scattered intensity, s(q), is computed by summing the 
scattering contributions from the n scattering entities in the 
material (e.g. each atom). The scattering contribution of each 

entity, fn, is in turn computed by integrating its density 
distribution, #(r), over all of real-space. 

Conceptually, the scattering experiment encodes all 
the information about the sample’s shape and internal structure, 
albeit in an opaque and non-intuitive way. Roughly, a scattering 
peak at a particular q (i.e. angle) implies a real-space repeating 
structure with a size-scale of: 

     (4) 

We note that the inverse nature of 2$/d means that a scattering 
peak at large angle corresponds to small real-space distances, 
whereas a peak at small angle corresponds to larger real-space 
distances. As the field of nanotechnology matures, x-ray 
scattering is emerging as a powerful tool to study new materials; 
however interpreting this data is difficult. Although scattering 
data is in essence a Fourier transform of the material’s structure, 
an experiment only captures the amplitude of the scattered 
waves, and cannot record the phase information.  
 X-ray scattering datasets are normally visualized 
using two-dimensional false-color images (see Figure 1). These 
images are an extremely valuable tool for researchers, but have 
their limitations. Scattering data can have a very large dynamic 
range, which is difficult to represent in a single image. Here, 
sonification can help, since the human ear has a 
correspondingly large dynamic range. [2] Moreover, the Fourier 
transform nature of scattering data implies a natural match with 
audio data. In scattering experiments, a given feature (e.g. at q0) 
will frequently have harmonics (at 2q0, 3q0, etc.). Interpreting 
this axis as frequency in a sonification would naturally generate 
audio overtones which the human auditory system is 
exceedingly well-equipped to detect: timbre. Timbre is difficult 
to define, but has been described as “that attribute of auditory 
sensation in terms of which a listener can judge that two sounds, 
similarly presented and having the same loudness and pitch, are 
different.” [3]  

In this paper, we explore sonification as a tool to 
provide scientists with an additional method to deeply explore 
scattering datasets. The abstract nature of the data makes this a 
challenging, but critical, problem. Moreover the quantity of 
such data generated is growing hugely with time: newer x-ray 
instruments are now being built with ever-greater flux, 
generating data at an ever-increasing speed. It is also worth 
noting that scattering experiments can also be performed with 
visible light, electron beams, and even neutron beams. 
Although we focus very specifically on x-ray scattering data in 
this paper, we view this as a case study for the general problem 
of extracting meaning from the highly abstract datasets that are 
common in the physical sciences. We show that timbral 
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sonification generated directly from the data through additive 
synthesis [4] can provide a useful instantiation of abstract data. 

 

Figure 1: Example x-ray scattering data. The direct beam is 
incident near the lower-left corner of the image. The false-
color image highlights certain features which arise from 
diffraction of x-rays from the sample’s internal structure.  

2. SONIFICATION 

Over the last few decades, there have been a number of 
interesting cases of data sonification. Sonifications have been 
made of seismic data [5], ocean currents [6], and heart rates [7]. 
Despite these examples, sonification is a largely underutilized 
technique. Sonification provides a number of unique 
advantages: the human ear has a wide dynamic range across 
two variables: frequency and loudness; the human auditory 
system is finely tuned to detect subtle changes and extract 
signals from substantial noise; sonifications can be ambient, 
rather than requiring focused attention; and sonifications can be 
added to other forms of data exploration, creating more 
immersive multi-modal interactions. 
 Much of the existing work in sonification has 
involved conversion of time-series data. Such conversions are 
undoubtedly valuable, and are intuitive to understand, but this 
leaves aside the vast majority of datasets, where some non-
temporal variable is of interest. In addition, recent sonifications 
have mapped the input data onto a tonal scale, or even used 
sampling or synthesis to reproduce notes from particular 
instruments. [8] These musical sonifications, like music itself, 
exploit pattern-seeking features of the human auditory system 
to create sounds that are crisp, distinct, recognizable, and 
typically pleasant. Although such realizations can be interesting, 
even beautiful, the musical nature frequently obscures the 
underlying patterns in the data. Herein we advocate for the 
more direct mapping between data space and sound. This 
necessarily leads to more complex, even cacophonous, 
sonifications; however such a mapping is relatively unbiased 
and preserves the majority of the information content. One can 
crudely identify a tradeoff between aesthetics and information 
content. Our sonification method uses pitch and loudness only 
to inform the additive synthesis; the main auditory channel is 
timbre.  

We reformulate the two-dimensional scattering image 
into a (q, angle) array, where ‘angle’ is the arc angle with 
respect to the vertical axis of the image. In so doing, rings of 
scattering (which have a constant q-distance from the incident 
x-ray beam) are turned into straight horizontal lines in the 
I(q,angle) matrix. Doing so also highlights any variation in the 
ring intensity, which corresponds to spatial orientation of the 
structures in the sample. The intensity matrix has no time 
variable; we introduce time by in effect sweeping through the 
experimental data. In particular, the I(q,angle) matrix is directly 

converted into an I(f,t) matrix, where f is frequency and t is time. 
This matrix is simply a spectrogram, or sonogram, which can of 
course be converted into a sound waveform through additive 
synthesis. For a sampling rate fs: 

   (5) 

here A(t) is the instantaneous amplitude of the output waveform, 
and the I(f,t) is discredited into In(t) by splitting the frequency 
range into N bins. Thus the scattering data (the I(q,angle) 
matrix) is mapped directly into the amplitudes of the sine wave 
components of the sound. This synthesis inherently creates 
timbre-based (as opposed to tonal) sounds. 
 We wrote a simple program, using the Python 
programming language, which directly performs the 
computation in equation (5), and outputs the resultant 
waveform into a sound file. We note that this brute-force 
computation of the waveform is not necessarily the most 
computationally efficient, or elegant, means of performing 
additive synthesis (e.g. an appropriate FFT could be used). 
However we elected to use this method in order to provide 
flexibility in terms of redefining the mapping between the input 
data and the output waveform. 

The mapping of q into frequency is extremely natural. 
As already described, both q and f are in some sense the 
variables along which a Fourier transform is taken. Both exhibit 
overtones and other natural relationships. The selected mapping 
is essentially taking the spatial modes (c.f. equations (2) and (3)) 
and mapping those into frequency modes. Although the one-to-
one mapping between the I(q,angle) array and I(f,t) array is 
information-preserving, and relatively natural, we must make a 
number of choices about what ranges to specifically map 
between. 

3. PARAMETER OPTIMIZATION 

In producing audio files from the two-dimensional data 
matrices, we must make a number of decisions about both 
audio encoding, and the range of the mapping (e.g. how to 
scale between angle and time). A sampling rate of fs = 44.1 
kHz (CD audio quality) was selected to provide sufficient 
quality for the detailed structures in the scattering data. 
Similarly, a 32-bit intensity encoding was used to allow for 
the large dynamic range of scattering datasets. As 
mentioned, there is a natural relationship between q and f. 
We align q = 0 with f = 0 so that any harmonics (or other 
natural progressions) in the scattering data are automatically 
converted into harmonics in the sound output. Scattering 
images are typically visualized using a false color map 
applied through a logarithmic scale, the human auditory 
system makes this unnecessary for sonification. 

Further parameters were optimized by testing a 
variety of values. For this testing we used scattering data from a 
polymer solar cell material confined in a nanoscale grating (see 
Figure 2). Physically, this sample has an oriented morphology; 
this translates to a scattering ring whose intensity varies along 
the arc. This, in turn, translates into time variation of the 
sonification. 

The mapping along the frequency axis, which 
encodes the q-values, is necessarily arbitrary. Although there is 
a natural reason to align the origins of q and f space, there is no 
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clear correspondence between inverse-distance and inverse-
time units. The maximum frequency for human hearing is 
~20 kHz. However this choice of frequency maximum was 
found to generate sounds with too many piercing components. 
Selecting too low a value for the frequency ceiling resulted in 
deep and rumbling sounds which essentially washed out all the 
structure in the scattering data. We found that an upper bound 
of ~5 kHz in frequency resulted in sonifications that were rich 
and preserved important data features, without leading to ear 
fatigue. 
 

 
Figure 2: X-ray scattering data in false color on the left. The 
image on the right remaps the scattering data into an I(q,angle) 
matrix.  
 
 The partitioning of the frequency axis into N bins has 
a substantial effect on the quality and character of the final 
sound. An extremely low value (e.g. 10 bins per Å–1), not 
surprisingly, over-smoothed the data and resulted in a loss of 
data. However, extremely fine partitioning (e.g. 1000 bins per 
Å–1) introduced drastic beating artifacts into the sound. 
Essentially, by having more frequency resolution than actually 
warranted by the data’s q-resolution, we introduce step-edges in 
the frequency envelope. The optimized value (50 bins per Å–1 
for the test dataset) reproduces the spacing in the original data.  
 The construction of the I(f,t) matrix also requires an 
arbitrary choice about temporal discretization. Note that this 
binning width is not the same as the sampling frequency, fs. 
Whereas fs describes the sampling rate used in the additive 
synthesis (the construction of the output waveform), the 
temporal binning describes the partitioning of the I(f,t) matrix 
used to compute the amplitude values for the synthesis. The 
temporal resolution here is limited by the original dataset. As 
expected, using low temporal resolution (10 bins per second) 
smoothed over features in the data, effectively throwing away 
data. Higher data rates of course cure this defect. However, 
there is no advantage to increasing the time partitioning beyond 
that dictated by the initial data. We found that 50 and 1,000 
bins per second were found to be essentially identical. We 
selected 150 bins per second as the optimal value, allowing a 
healthy safety margin. We improved the sound substantially by 
interpolating between the data points along the time axis. Doing 
so avoids sudden changes which introduce sharp popping 
artifacts into the sound, which hinders comprehension (not to 
mention damaging speakers). 

The length of the sound has a strong effect on the 
listener’s ability to discern structure. Sounds that are too short 
are difficult to parse. Stretching the sound helps reveal certain 
details, but inherently makes changes more gradual and difficult 
to notice. We found that sounds less than 1 second were too fast 
to be of any use. Sounds on the order of 1-2 seconds could 
potentially be useful for quick comparisons and identifications, 
but were still too fast to truly notice signal variations. At 3.5 
seconds, sounds, and trends within those sounds, were 

discernible. Stretching sounds beyond ~10 seconds made it 
harder to track feature changes. 
 The above parameter optimization confirms certain 
limits of the sonification process, but is in some sense 
idiosyncratic to the datasets chosen. Ideally, all of these 
variables would be quickly and easily tunable by the user, 
allowing them to explore datasets in different ways. Looking 
forward, we envision a software interface that allows the user to 
select subsets of the scattering data to sonify, and allows the 
mapping ranges themselves to be easily modified. 

4. VARIANTS 

In the foregoing, we have attempted to motivate the use of the 
most direct, perhaps most naïve, mapping between the input 
data and the final waveform. We also explored a variety of 
alternative mapping strategies. Imposing additional mapping 
rules can be a powerful way to highlight certain features of 
datasets, and this is a valuable way to explore data through 
sound. We considered the following alternate mapping of 
intensity to waveform amplitude: 
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fs

In (t)
# 

$ 
% 

& 

' 
( 

n=1

N

)    (6) 

Here, rather than the intensities modulating the amplitude of the 
sine waves, they modulate the frequencies of these waves. By 
using the data matrix to modulate frequency, rather than 
amplitude, the character of the sound changes substantially. 
Changes in intensity become very strongly highlighted, as they 
produce noises that vary in pitch. These chirps or ‘boomerang’ 
sounds are distinctive and can be useful for uncovering subtle 
intensity changes, or small peaks, that might otherwise go 
unnoticed. 

For many samples of interest in x-ray scattering, there 
is no preferred orientation of the material. Experimentalists 
typically convert these two-dimensional datasets into one-
dimensional curves by averaging overall all possible angles in 
the image. Sonifying the original two-dimensional data using 
the approaches described above would result in a sound that 
does not vary with time. One obvious alternative mapping that 
we explored is to simply sweep time through the horizontal axis 
(q), and use the intensity to modulate the amplitude of a single 
tone at frequency f: 

    (6) 

Although simplistic, this mapping can be useful. In particular, 
the existence of equally-spaced peaks in scattering data yields a 
metered oscillation in the sound. Moreover, subtle deviations of 
peak positions could be picked up by the listener, as hearing is 
able to discriminate small timing differences. As with the two-
dimensional data, we can use the intensity data to instead 
modulate the frequency of the sound: 
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Here again, we discover that by modulating frequency, rather 
than amplitude, sudden changes in intensity in the data become 
highlighted by sweeping changes in frequency. Details of peak 
positions and heights are sacrificed, but extremely weak peaks 
now become readily apparent. This points again to the need in 
sonification for user-adjustability. 
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5. APPLICATIONS 

Scientists studying x-ray scattering have already developed a 
sophisticated toolbox of visualization techniques to explore data, 
and theoretical models to explain, quantify, and fit their data. It 
is thus natural to ask whether sonification can bring any new 
insight to the task of understanding these abstract datasets. We 
envision a variety of ways in which sonification could elucidate 
experiments. Consider the data shown in Figure 3, for four 
different kinds of samples. The false-color images are all quite 
distinct; and indeed the corresponding sounds are all unique and 
extremely distinct: the first image has many striations which 
leads to a number of fairly distinct tones persisting in time. The 
second image is a ‘misaligned’ sample; the corresponding 
sonification is dominated by blips and cracks that sound 
distinctly like artifacts. The third example is a composite of 
nanotubes dispersed in an elastic polymer. The scattering image 
has diffuse intensity throughout, due to the disordered 
arrangement in the sample; this can be heard as a hazy, wind-
like sound permeating the sonification. The final example is a 
nano-scale grating. Here, the extremely regular and precise 
structure results in many distinct streaks in the false-color 
image. These streaks create periodic rhythms in the sonification.  

One notable advantage of sonification over careful 
visual inspection is that the former can be done ambiently. 
Modern scientific instruments are becoming increasingly 
automated, to handle the growing scale of scientific discovery. 
Sonification provides the opportunity for the experimenter to 
work on other tasks, while listening, in the background, to 
automated data collection. Any sudden changes in the incoming 
data, or surprising samples, will immediately be noticed and 
can be explored in greater detail. Consider for instance the 
‘misaligned’ sample; the sonification is distinct and the 
experimenter would immediately know that something was 
wrong with the instrument. 
 

 
Figure 3: Examples of the variety of data one can obtain from 
x-ray scattering. From top to bottom the sample are: a semi-
crystalline commercial plastic; a ‘misaligned’ sample (where 
the beam missed the sample); a composite of carbon nanotubes 
in a matrix of elastic polymer; and an empty nano-scale grating. 
 
 With some effort and training, it is also likely that an 
experimenter could learn to differentiate between all the unique 
features in the sound, and could pull out interest trends and 
features that they had ignored in a visual analysis. It is clear, 

however, that what is lacking are fast and easy-to-use software 
tools to enable users to quickly explore different mappings and 
different datasets.  

6. CONCLUSION 

We have presented a case study of sonifying x-ray scattering 
data. Direct mapping of the two-dimensional intensity values of 
a scattering dataset into the two-dimensional matrix of a 
sonogram is a natural and information-preserving operation that 
creates rich sounds. Our work supports the notion that many 
problems in understanding rather abstract scientific datasets can 
be ameliorated by adding the auditory modality of sonification. 
We further emphasize that sonification need not be limited to 
time-series data: any data matrix is amenable. 

Timbral sonification is less obviously aesthetic, than 
tonal sonification, which generate melody, harmony, or rhythm. 
However these musical sonifications necessarily sacrifice 
information content for beauty. Timbral sonification is useful 
because the entire dataset is represented. Non-musicians can 
understand the data through the overall color of the sound; 
audio experts can extract more detailed insight by studying all 
the features of the sound. 
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