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ABSTRACT

Human locomotion is fundamentally periodic, so when sonify-
ing gait, it is desirable to exploit this periodicity to produce rhyth-
mic sonification synchronized to the motion. To achieve this rhyth-
mic sonification, some mechanism is required to synchronize an
oscillator to the period of the motion. This paper presents a method
to synchronize to multidimensional signals like those produced by
a motion capture system. Using a subset of the joint-angle signals
produced by motion capture, the method estimates the phase of
a periodic, multidimensional model to match data observed from
a moving subject. It does this using an optimization algorithm
applied to a suitable objective function. We demonstrate the syn-
chronization with data from a publicly available motion capture
database, producing sonifications of drum beats synchronized to
footfalls of subjects. The method is robust and shares some com-
mon features of phase-locked loops used for synchronizing one-
dimensional sinusoidal signals. We foresee applications to sonifi-
cation for athletics and clinical treatment of gait disorders.

1. INTRODUCTION

Human locomotion is, by necessity, periodic in nature [1]. Walk-
ing, jogging, running, rowing, and skating are common examples
in which periodic repetition of motions move a person. We seek to
use sonification to assist the training of athletes and in the clinical
treatment of gait disorders. Given the periodic nature of locomo-
tion, it then seems natural (possibly even required) to exploit this
periodicity in sonification. This requires that the sonification sys-
tem operate synchronously with the motion, resulting in rhythmic
sonification.

Figure 1 illustrates the concept of rhythmic sonification. A
phase signal, φ(t) (normalized such that 0 ≤ φ < 1) provides
a temporal base indicating where a subject is in the cycle of a
walking stride (or other periodic motion). As φ(t) passes a phase
threshold, φT , it triggers a sonic event. For example, one can se-
lect φT to correspond to the right footfall resulting in a sound that
occurs synchronously with the rhythm of the walker. φ(t) is the
foundation upon which one builds rhythmic sonification – once
φ(t) is established, a plethora of options for rhythmic sonification
becomes available.

Godbout and Boyd [2] give an example of rhythmic sonifica-
tion in speed skating. They measure the ankle angle of a skater
over time and synchronize to a model to generate a φ(t), and use
that to provide rhythmic audio feedback to the skater. However,
ankle angle measured over time is a one-dimensional signal. In
contrast, motion capture systems generate many channels of data
that we may wish to synchronize to. For example, the skeletal

!"#$
%

&

!

"#$%&'()*++&)&,-
%./0,-&1&0(%

Figure 1: Phase-triggered sound events. Phase cycles from zero
through one over the course of one period of the gait (or other
periodic motion). As the phase passes a threshold, φT , it triggers
a sound event to give rhythmic sonification synchronized to the
motion.

poses measured by a Vicon [3] system in the CMUMotion Capture
Database [4] contains 62 channels of data. Boyd and Sadikali [5]
describe a rhythmic sonfication system using multiple channels of
pixel data, but each channel is synchronized separately.

In this paper, we present a novel synchronization method to
produce a synchronized time base from multi-dimensional motion
capture data. Using multidimensional data not only provides a
more reliable synchronization, but opens the doors to rhythmic
sonification with numerous sensors beyond motion capture sys-
tem, e.g., multi-axis accelerometers and gyros. We demonstrate
our method with examples of walking and running motion cap-
ture data. The method provides a reliable time base along with a
measure indicating the quality of synchronization at any point in
time.

2. BACKGROUND

The synchronization of periodic events is a common phe-
nomenon [6]. Synchronization shows up in electrical and mechan-
ical systems, mathematics, psychology, and biological systems.

Phase-locked loops (PLL) [7] are a well known mechanism
for synchronizing sinusoidal signals. PLLs are essentially feed-
back control systems that adjust the frequency of an internal si-
nusoidal oscillator to synchronize to an external oscillation. They
are widely used in communications systems. Ijspeert et al. [8]
and Pongas et al. [9] give examples of multi-dimensional synchro-
nization in robotics. They measure and model periodic motions to
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build control systems that allow robots to duplicate these periodic
actions.

While PLLs synchronize a single oscillator, Strogatz et al. [10,
11, 12] examined the mutual synchronization of multiple oscilla-
tors. Inspired by natural phenomena such as the synchronization of
fireflies, they established the regions within the space of coupling
parameters that result in synchronization.

The importance of synchronization has been observed in the
psychology literature. For example, Bertenthal and Pinto [13] use
moving light displays to show the importance of phase locking in
the perception of human gaits. When phase locking of the lights is
perturbed, observers do not readily perceive a gait.

In biological systems, McGeer [1] showed that periodicity in
human locomotion is an inevitable and natural consequence of the
structure of the human body – gait is a limit cycle arising from
body mechanics. Glass [14] examines possible mechanism for
synchronization in biological structures. Cariani [15, 16, 17, 18]
describes temporal coding mechanisms for perception of sound.

The message is clear – where moving people are concerned,
synchronization is important. Therefore, when one seeks to sonify
human motion, synchronizing to the motion is important, perhaps
even necessary and we see examples in the work of Staum [19],
Hamburg and Clair [20], Godbout and Boyd [2], and Boyd and
Sadikali [5].

3. SYNCHRONIZATION BY OPTIMIZATION

Let y(k) = [y1(k) . . . ync(k)]
T be a vector of measurements of

a periodic nc-dimensional signal at time interval k. For example,
Figure 2(a) shows an example walking gait from the CMUMotion
Capture Database [4], nc = 4. Note that although the full data set
has 62 channels, we use only a subset for the synchronization. We
choose the subset to contain those channels we expect will be best
for synchronization. For example, hand and wrist movements are
likely to confound the process, while McGeer [1] suggests that leg
motion must be periodic. Therefore, we use the left and right fe-
mur and tibia, and take only the channels corresponding to motion
in the sagital plane (x-axis rotation as denoted in the database).
This corresponds to rotation about the hip and knee joints. In the
remaining discussion, we assume that each channel of y is zero-
mean, or has been preprocessed (with a high-pass filter) so that it
is zero-mean. Our multidimensional synchronization process fol-
lows these steps.

1. Build a multidimensional periodic model of the motion we
wish to synchronize to. This needs to be done only once for
any type of motion (e.g., walking or running).

2. For an unknown signal, match the signal to the model at any
point in time to estimate the phase.

The following subsections describe these steps in detail.

3.1. The Model

Let ye(k) be an exemplar signal with ns samples for the motion
we wish to synchronize with. It must contain at least one full pe-
riod of the motion. Our goal is to build a model function, f(φ(k)),
that approximates ye(k). Equivalently, we want nc models such
that fi(φ(k)) ≈ yi(k) for 1 ≤ i ≤ nc.

Taking inspiration from Ijspeert et al. [8], we build fi from
a linearly weighted combination of circular Gaussian basis func-
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Figure 2: Signals used in the construction of a multidimensional
periodic model: (a) the x-axis rotation of the left and right femur
and tibia, (b) the model obtained for nc = 4 and nm = 16, (c)
the periodic basis functions for nm = 16, and (d) the same basis
functions plotted in polar coordinates.

tions. That is:

fi(φ) =
nm∑

j=1

wijg(φ;µj ,σ), (1)

where nm is the number of Gaussian basis functions in our model,
wij is weight of the jth Gaussian for the ith channel, and

g(φ;µ,σ) =
1√
2πσ2

e−(φ−µ)/2σ2

, (2)

is the Gaussian probability density function with center µ and stan-
dard deviation σ.
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We select the µj such that the Gaussian bases are uniformly
distributed between −π and π, and separated by 2σ, i.e., σ =
π/nm. Larger values of nm give a basis set that models y in more
(high-frequency) detail, and lower values for nm lead to a model of
y that is smoother and has less high-frequency detail. Figure 2(c)
and (d) show the basis functions for nm = 16.

The set of wij for 1 ≤ i ≤ nc and 1 ≤ j ≤ nm defines our
model function. To obtain the wij from yi(k), for 1 ≤ k ≤ ns,
we build the following system of equations,




g(φ(1);µ1,σ) . . . g(φ(1);µnm ,σ)
...

. . .
...

g(φ(ns);µ1,σ) . . . g(φ(ns);µnm ,σ)








wi,1

...
wi,nm





=




yei(1)
...

yei(ns)



 , (3)

and solve using least squares. To get φ(k), we arbitrarily select
an easily identified point in ye and use that to establish a phase
reference such that φ ramps from zero to 2π over each period of y.
For what follows, we use the first two zero crossings of the x-axis
rotation of the right femur with positive slope. Figure 2(b) shows
the model obtained for the exemplar in Figure 2(a) for nc = 4 and
nm = 16.

3.2. Synchronization

To synchronize f with an unknown y(k) at sample interval k, we
maximize an objective function parameterized by phase. We begin
with the following:

E1(φ) = f(φ)⊗norm y(k), (4)

where ⊗norm denotes normalized cross-correlation.
Maximizing E1 works well to estimate phase, but often the

phase estimates deviate because the subject is not exactly like the
exemplar. To smooth out the phase estimates, we introduce a sec-
ond term to our objective function to favour solutions with a con-
stantly increasing phase:

E2(φ) =

(
φ− (φ̂(k − 1) +∆φ)

2π

)2

, (5)

where φ̂(k−1) is the phase estimate for the previous sample of y,
and∆φ is the expected phase change between samples based on a
typical walking cadence. Minimizing E2 produces a phase ramp
that corresponds exactly to the∆φ. We combine E1 and E2 to get
the following objective function,

E(φ) = E1(φ)− λE2(φ), (6)

where λ is a regularization parameter. When, λ is small, the esti-
mated phase depends primarily on a matching data to the model,
and when λ is large, the estimated phase reflects only the cadence
defined by∆φ, i.e., a period of

2πT
∆φ

, (7)

Where T is the sample period. To estimate the phase we compute

φ̂ = argmax
φ

E(φ), and (8)

Emax = max
φ

E(φ), (9)

where φ̂ is our phase estimate and Emax is a measure of quality of
match between signal and model.

As might be expected, E(φ) is periodic itself, and some care
is needed to perform the optimization in the previous equation. We
developed the following algorithm to compute φ̂.

1. Compute E on the nm centers of the Gaussian basis func-
tions, i.e., evaluate E(µ1) through E(µnm ) .

2. Find the maximum value of E, E(µjmax ) among the sam-
ples in step 1.

3. Interpolate to find the position of the maximum among the
samples E(µjmax−1), E(µjmax), and E(µjmax+1).

To interpolate between samples, we use Nishihara’s [21] sub-
pixel interpolation method illustrated in Figure 3. Three adjacent,
uniformly spaced samples centered at the origin, x = −1, 0, 1,
bracket a maximum of f(x). The three points define a parabola.
Some basic calculus reveals that the position of the maximum, xm
is at

xm =
−b
2a

, (10)

where

a =
1
2
(f(1) + f(−1)) − f(0), and (11)

b =
1
2
(f(1) − f(−1)). (12)

The maximum value estimated by interpolation is

f(xm) = ax2
m + bxm + c, (13)

where c = f(0). To find φ̂, and Emax, set

f(−1) = E(µjmax−1) (14)
f(0) = E(µjmax), and (15)
f(1) = E(µjmax+1), (16)

interpolate to find xm and f(xm), then set

φ̂ = µjmax + xm
π
nm

, and (17)

Emax = f(xm). (18)

4. IMPLEMENTATION AND TESTING

4.1. General

We tested our method using the CMU Motion Capture
Database [4]. The database contains motion capture data for mul-
tiple subjects performing different activities over multiple trials.
The motion capture data is sampled at 120Hz, and is available with
raw video of trials, video renderings of the data, and various soft-
ware tools. Of the activities available in the database, we tested on
the complete selection of walking and running examples.

We implemented the method in Octave [22], an open-source
Matlab variant, then later implemented the optimization algorithm
for phase matching in Pure Data [23]. In all cases, we computed
the model coefficients, wij , with Octave since this needs to be
done only once, prior to any sonification.

It is necessary to manually choose the exemplar from which
the model is built. In the examples here, we chose a single trial for
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Figure 3: Nishihara sub-pixel interpolation method to find the
maximum of a parabola that fits three adjacent samples with uni-
form spacing.

(a) (b)

Figure 4: Screenshots from Pure Data sonification patch demon-
strating synchronous sonification of multidimensional data: (a)
patch, and (b) synchronized video.

each of walking and running with the requirement that the exem-
plar sequence could contain only the activity of interest, and had to
have at least two positive-going zero-crossings in the right femur
x-axis rotation. The zero-crossings ensured that we could estab-
lish φ(k) correctly. While it would be possible to combine mul-
tiple subjects and trials when computing the model coefficients,
it turned out not to be necessary as our results show – it seems
one person’s gait is similar enough to others to establish a time
base. For all the examples here, walking and running alike, we
used ∆φ = 0.05radians , which corresponds to a gait period of
1.05s. Also, for all examples, we used λ = 100.

Our sonification is simple, but sufficient to verify that we have
a correct time base for other more complex sonifications. In gen-
eral, once the time base is correct, timing sound events is simple.
With that in mind, our sonification consists of two drum taps per
gait period with the phase triggers set to correspond to the left and
right footfalls. When viewing the rendered motion capture video
with the sonification, it is simple to verify that the drum beats are
occurring at the correct time and that the time base is correct. We
normalized phases in the range [−π . . .π] to [0 . . . 1]. In this case,
footfalls happen at approximately φT = 0.25 and φT = 0.75.
Figure 4 shows screenshots from the Pure Data patch in operation.

4.2. Walking

Figure 5 shows plots of φ̂ and Emax for four representative walk-
ing sequences. In all examples we tried, drum beats occurred coin-

cidentally with footfalls in all cases where the subject was walking
with a normal stride. As expected, the synchronization only fails
when the subject is walking backwards or otherwise not walking
normally. In these cases, the subject has deviated too far from our
model gait for synchronization to occur.

Figure 5(a) shows plots for our walk training subject, i.e., it
shows the model synchronizing to itself – a strawman test. The
second term of Equation 6 starts with an arbitrary φ̂ and takes a
few samples to converge to the correct phase. After this conver-
gence, the phase is synchronized correctly. The longest conver-
gence period we observed was approximately 75% of a gait cycle,
and most often the convergence occurs in half a cycle or less. Note
that the values of Emax are low during the convergence interval.
So although the system has not converged, it has a numerical indi-
cator that the phase estimate is not good. This example also has a
period of 1.1s, which happens to correspond closely to the natural
period for∆φ = 0.05radians .

Figure 5(b) shows results for a similar trial, but with a different
subject. This subject has a much slower stride, with a period of
1.6s. Although this is significantly different than the natural period
for∆φ = 0.05radians , the system correctly locks to the phase of
the walker while the second term of Equation 6 smooths the phase
estimates.

Figure 5(c) corresponds to a sequence in which the subject
walks for a few paces, stops, turns around, and walks a few paces
back to their starting position. The synchronization plots clearly
show this. In the middle of the plot, there is an interval during
which the the phase stops ramping and Emax drops which corre-
sponds to the moment when the subject stops and turns. The soni-
fication produces correct footfalls during the normal paces, and a
couple of spurious taps as the subject stops and turns.

Walking backwards confounds the synchronization and soni-
fication as shown in Figure 5(d). These plots correspond to part
of a sequence where the subject walks backwards for a couple of
paces. Clearly the synchronization has failed. The second term of
the objective function (Equation 6) drives φ̂ forward in an approx-
imate phase ramp, but waveform is irregular and Emax values are
sporadically low indicating a poor match. We did try synchroniz-
ing to this sequence with the second term of Equation 6 removed,
i.e., λ = 0. In this case we do see a downward phase ramp as one
might expect, but the cost is in a noisier phase estimate throughout
the entire sequence.

4.3. Running

Figure 6 shows plots of φ̂ and Emax for four representative run-
ning sequences. As was the case with the walking examples, the
drum beats occurred simultaneously with footfalls during normal
running. Most of the running sequences are by necessity shorter –
the higher speed means the subject is in the field of view of the mo-
tion capture system for a shorter period of time, unless they alter
their gait to change direction.

Figure 6(a) shows synchronization with the same subject used
for our running model, but for a different trial. Synchronization is
comparable to what we observed for walking. Figure 6(b) shows
a sequence for a different subject, again exhibiting excellent syn-
chronization. It is worth noting that although the stride frequen-
cies for these are significantly faster than the natural frequency for
∆φ = 0.05radians (periods of 0.68s and 0.78s verus 1.05s), our
system still synchronizes well.

Figure 6(c) corresponds to a sequence in which the subject

Proceedings of the 18th International Conference on Auditory Display, Atlanta, GA, USA, June 18-21, 2012

71



-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  50  100  150  200  250  300  350

ph
i e

st
im

at
e

time (s/120)

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350

E_
m

ax

time (s/120)

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  100  200  300  400  500  600

ph
i e

st
im

at
e

time (s/120)

-0.5

 0

 0.5

 1

 1.5

 0  100  200  300  400  500  600

E_
m

ax

time (s/120)

(a) (b)

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  200  400  600  800  1000  1200  1400

ph
i e

st
im

at
e

time (s/120)

-0.5

 0

 0.5

 1

 1.5

 0  200  400  600  800  1000  1200  1400

E_
m

ax

time (s/120)

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1300  1350  1400  1450  1500  1550  1600  1650  1700

ph
i e

st
im

at
e

time (s/120)

-0.5

 0

 0.5

 1

 1.5

 1300  1350  1400  1450  1500  1550  1600  1650  1700

E_
m

ax

time (s/120)

(c) (d)

Figure 5: Walking synchronization results: (a) model squence, (b) a typical walking sequence, (c) subject stopping and turning, and (d)
subject walking backward. In all examples, the upper plot shows the phase estimate, φ̂, and the lower plot shows Emax.

runs, comes to a stop, and with a hop changes direction. One can
see when the hop occurs where the phase ramp is distorted near
the middle of the sequence, and where the sporadic drops inEmax

occur. Again, it was in these sorts of variations from a normal
running gait where the sonification of footfalls becomes erratic.

Figure 6(d) shows plots for a longer running sequence in
which the subject runs around the field of view in a box pattern,
turning at the corners. The effects of this pattern are clear in the
plots. One can see the dips in Emax at the corners, and also some
distortion in the phase ramps as the subject alters the gait to ac-
commodate the corner.

5. DISCUSSION

As a way to understand the synchronization method presented
here, we can compare to PLLs. Figure 7 shows the elements of
a PLL [7]. The phase comparator and the (low-pass) loop filter to-
gether compare input oscillations to the oscillations of an internal
oscillator, the voltage controlled oscillator (VCO). The transfer
function of the VCO, shown in Figure 7(b) relates the frequency
of the internal oscillator to its natural frequency, ω0, and the differ-
ence between internal and external signals. It is not meaningful to
compare two one-dimensional signals instantaneously, leading to
the requirement to have a low-pass filter that effectively integrates

(a) (b)

Figure 7: A basic phase-locked loop: (a) block diagram, and (b)
the transfer function of the voltage controlled oscillator.

phase comparisons over time.
In their synchronization system for speed skating, Godbout

and Boyd [2] also integrate a comparison over time when they
compute the normalized cross-correlation over a window of one
period. They have no equivalent to the VCO, relying instead on a
brute-force search over frequency space for every sample.

In the system presented here, we are getting close to a multi-
dimensional PLL for arbitrary wave forms. The E1 term in Equa-
tion 6 compares an incoming multidimensional signal to the in-
ternal multidimensional oscillator in our model. The need for the
low-pass filter is obviated by the multidimensional signal – we in-
tegrate over dimensions instead. This allows us to get an instan-
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Figure 6: Running synchronization results: (a) the model sequence, (b) a typical running sequence, (c) hop and change of direction, and
(d) running around a square. In all examples, the upper plot shows the phase estimate, φ̂, and the lower plot shows Emax.

taneous comparison that is not possible with one-dimensional sig-
nals. Further more, the E2 term in Equation 6 is equivalent to the
VCO. It ramps at a natural frequency defined by ∆φ but responds
to the external signal when combined with E1. Our system is not
precisely equivalent to a PLL though – it lacks feedback to track
the incoming signal, relying on an optimization for each sample
interval.

It is important to note that although we synchronize with just
four channels of the motion capture data, once we are synchro-
nized, we can rhythmically sonify any and all channels of the data.
We see potential here because:

• our method opens the door to real-time rhythmic sonification
for athletics and clinical applications, and

• motion capture is getting cheaper (consider the MicroSoft
Kinect) which will lower the cost requirements for using this
type of sonification.

6. CONCLUSIONS

We have presented a method of synchronization applicable to peri-
odic, multidimensional signals like those produced by motion cap-
ture systems acquiring data from locomotion. The system features
key elements of PLLs, an established method for synchronizing in-
ternal oscillators to incoming sinusoids. Once this synchronization

is established, it provides the temporal basis for rhythmic sonifica-
tion.

7. REFERENCES

[1] T. McGeer, “Passive walking with knees,” in IEEE Inter-
national conference on Robotics and Automation, 1990, pp.
1640–1645.

[2] A. Godbout and J. E. Boyd, “Corrective sonic feedback for
speed skating: a case study,” in International Conference on
Auditory Display, Washington, DC, June 2010, pp. 23–30.

[3] “Motion capture systems from vicon,” Retrieved January 23,
2012, from http://www.vicon.com.

[4] “Cmu graphics lab motion capture database,”
http://mocap.cs.cmu.edu/, created with funding from
NSF EIA-0196217.

[5] J. E. Boyd and A. Sadikali, “Rhythmic gait signatures from
video without motion capture,” in International Conference
on Auditory Display, Washington, DC, June 2010, pp. 187–
191.

[6] S. Strogatz, Sync: The Emerging Science of Spontaneous Or-
der. New York: Theia Books, 2003.

Proceedings of the 18th International Conference on Auditory Display, Atlanta, GA, USA, June 18-21, 2012

73



[7] R. E. Best, Phase-locked loops design, simulation and appli-
cations. New York: McGraw–Hill, 1999.

[8] A. J. Ijspeert, J. Nakanishi, and S.Schaal, “Learning rhyth-
mic movements by demonstration using nonlinear oscilla-
tors,” in International Conference on Intelligent Robots and
Systems, Lausanne, Switzerland, October 2002, pp. 958–
963.

[9] D. Pongas, A. Billard, and S. Schaal, “Rapid synchronization
and accurate phase-locking of rhythmic motor primitives,” in
International Conference on Intelligent Robots and Systems,
Edmonton, AB, Canada, August 2005, pp. 2911–2916.

[10] P. C. Matthews and S. H. Strogatz, “Phase diagram for the
collective behavior of limit-cycle oscillators,” Physical Re-
view Letters, vol. 65, no. 14, pp. 1701–1704, October 1990.

[11] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-
coupled biological oscillators,” SIAM Journal of Applied
Mathematics, vol. 50, no. 6, pp. 1645–1662, November
1990.

[12] S. H. Strogatz, R. E. Mirollo, and P. C. Matthews, “Cou-
pled nonlinear oscillators below the synchronization thresh-
old: relaxation be generalized landau damping,” Physical Re-
view Letters, vol. 68, no. 18, pp. 2730–2733, May 1992.

[13] B. I. Bertenthal and J. Pinto, “Complementary processes in
the perception and production of human movements,” in A
Dynamic Systems Approach to Development: Applications,
L. B. Smith and E. Thelen, Eds. Cambridge, MA: MIT
Press, 1993, pp. 209–239.

[14] L. Glass, Nonlinear Dynamics in Physiology and Medicine,
ser. Interdisciplinary Applied Mathematics. Springer, 2003,
ch. Resetting and entraining biological rhythms, pp. 123–
148.

[15] P. Cariani, “Temporal coding of periodicity pitch in the au-
ditory system: an overview,” Neural Plasticity, vol. 6, no. 4,
pp. 147–172, 1999.

[16] ——, “Temporal coding of sensory information in the brain,”
Acoustical Science and Technology, vol. 22, no. 2, pp. 77–84,
2001.

[17] ——, “Temporal codes, timing nets, and music perception,”
Journal of New Music Research, vol. 30, no. 2, pp. 107–135,
2002.

[18] ——, “Temporal codes and computations for sensory repre-
sentation and scene analysis,” IEEE Transactions on Neural
Networks, vol. 15, no. 5, pp. 1100–1111, 2004.

[19] M. J. Staum, “Music and rhythmic stimuli in the rehabili-
tation of gait disorders,” Journal of music therapy, vol. 20,
no. 2, pp. 69–87, 1983.

[20] J. Hamburg and A. A. Clair, “The effects of a movement
with music program on measures of balance and gait speed
in healthy older adults,” Journal of Music Therapy, pp. 212–
226, 2003.

[21] H. K. Nishihara, “Prism: A practical real-time imaging
stereo matcher,” MIT AI Lab, Tech. Rep. AI Memo 780,
1984.

[22] “Octave,” Retrieved February 8, 2012, from
http://www.gnu.org/software/octave/.

[23] “Pure data,” Retrieved February 8, 2012, from
http://puredata.info/.

Proceedings of the 18th International Conference on Auditory Display, Atlanta, GA, USA, June 18-21, 2012

74


